Explorations and Applications of Enzyme-linked Bioremediation of Synthetic  Dyes

Explorations and Applications of Enzyme-linked Bioremediation of Synthetic Dyes

4.9
(717)
Write Review
More
$ 15.00
Add to Cart
In stock
Description

Extensive use of synthetic dyes and their subsequent release in industrial wastewater is a growing environmental problem. These dyes are recalcitrant in nature, and some dyes are also well established to be potentially carcinogenic and mutagenic as well as genotoxic. Research efforts have been devoted to develop new, low-cost, and eco-friendly treatments capable of reducing and even eliminating synthetic dye compounds from the environment. Enzymatic approach has attracted much interest recently in the decolorization of textile and other industrially important dyes from wastewater as an alternative strategy to conventional chemical, physical, and biological treatments, which pose serious limitations. In this chapter, the accumulated research data on the potential of the oxidoreductive enzymes—high redox potential peroxidases (lignin peroxidase [LiP], EC 1.11.1.14; manganese peroxidase [MnP], EC 1.11.1.13; dye decolorizing peroxidase [DyP], EC 1.11.1.19; and versatile peroxidases [VP], EC 1.11.1.16), laccases (benzenediol–oxygen oxidoreductase, EC 1.10.3.2), polyphenol oxidases (EC 1.14.18.1), and azoreductases (azobenzene reductases, EC 1.7.1.6)—that have been exploited in the decolorization and degradation of synthetic dyes are presented. An overview of enzyme technology, including the importance of redox mediators for enhanced range of substrates and efficiency of degradation, current biodegradation applications, and suggestions to overcome the limitations to these proteins’ large scale and efficient use, is made. Different strategies currently being used and future prospects for the potential use of genetic engineering techniques to improve the performance of these oxidoreductases in terms of stability, selectivity, and catalytic activity in dye bioremediation technologies are also explored.

Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review - ScienceDirect

IJERPH, Free Full-Text

Full article: Molecular docking and molecular dynamics simulation approaches for evaluation of laccase-mediated biodegradation of various industrial dyes

Full article: Molecular docking and molecular dynamics simulation approaches for evaluation of laccase-mediated biodegradation of various industrial dyes

Eco-friendly detoxification of hazardous Congo red dye using novel fungal strain Trametes flavida WTFP2: Deduced enzymatic biomineralization process through combinatorial in-silico and in-vitro studies - ScienceDirect

PDF) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase

Water, Free Full-Text

Sustainability, Free Full-Text

Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology - ScienceDirect

Application of docking and active site analysis for enzyme linked biodegradation of textile dyes - ScienceDirect